Теорема: fn(x) → f(x), xO(a), fn’(x) C(O(a)),
Тогда f(x)D(O(a))
и f’(x)=g(x),
xO(a)
Доказательство. (на основании теоремы об интегрировании функционального ряда)
fn’(t)=g(t), t[a,x] – непрерывная функция, так как ряд fn’(t) равномерно сходится на O(a). На основании теоремы об интегрировании функционального ряда этот ряд можно проинтегрировать почленно и получить равномерно сходящийся на O(a) ряд.
Степенными рядами называются ряды вида , где an, x0 –постоянные, x – переменная.
Мы будем рассматривать ряды с x0=0, т.е.
1 теорема Абеля. Пусть сходится при некотором x0. Тогда для h< ряд сходится равномерно на [-h;h]
Доказательство. Так как сходится, то , где M>0
– некоторая постоянная.
сходится по признаку Вейерштрасса
Следствие: 1)
Область сходимости степенного ряда
D=, где R – радиус сходимости.
Любой степенной ряд сходится в точке x=0. В остальных случаях ряд сходится при всех , если R – радиус сходимости (точная верхняя грань множества x, для которых ряд сходится)-существует. Если точной верхней грани нет, то полагают - ряд сходится на всей числовой прямой.
Приведем примеры:
Чтобы найти радиус сходимости, можно воспользоваться признаками сходимости знакопостоянных рядов Даламбера либо Коши.
Признак Даламбера:
Признак Коши:
Примечание. Если ни один из
указанных пределов не существует, то нужно положить радиус сходимости равным нижнему
пределу (наименьшему частичному пределу) выражения для R.
Пример.
R=1
не существует.
2 теорема Абеля.
Ряд сходится в точке x=x0 . Тогда ряд сходится равномерно на отрезке [0;x0] (или [x0;0] если x0<0).
Доказательство.
1) по условию
2) - невозрастающая по n функция.
Следствия:
1) , D – область сходимости
2), D – область сходимости
3)
Применяя последовательно теорему о почленном дифференцировании степенного ряда, получим соотношение для n-го коэффициента ряда.
- коэффициенты степенного ряда Тейлора
- в общем случае неверно, т.е. ряд Тейлора для функции f(x) не всегда совпадает с самой
функцией.
Пример.
Пусть
и ; тогда
Доказательство. По формуле Тейлора с остатком в форме Лагранжа получим: