Представим неоднородное уравнение в виде:
, (1)
где P(x) и Q(x) - многочлены, причем .
Частное решение уравнения (1) можно искать в виде:
, где R(x) и S(x) – многочлены степени m, k –кратность корня характеристического уравнения (k принимается равным 0, если не является корнем характеристического уравнения).
Пример.
В данном случае и частное решение ищется в виде:
;
Подставляем выражения для и в исходное уравнение:
Решение исходного уравнения:
Рассмотрим систему
, где - произвольные постоянные
Решение представляет собой систему , которая задает линейное векторное пространство R2 .
Решение системы можно представить также в виде
, если - решения независимы.
Исходную систему запишем в виде:
, где A – матрица из коэффициентов системы.
Введем невырожденную матрицу B замены
, где
Матрица A1 запишется в виде , где - собственные значения характеристического многочлена матрицы A (собственные числа):
;
, где и - собственные векторы матрицы A.
Пример.
Собственные числа матрицы A:
Нетрудно найти, что
Общее решение системы уравнений:
Пример 2. Рассмотрим случай, когда корни характеристического многочлена совпадают.
(1)
, матрица примет вид .
, другое решение нужно искать в виде:
(1’) , где a,b,c,d – неопределенные коэффициенты.
Найдем их, продифференцировав уравнения системы (1’) и подставив выражения для в уравнение (1)
Разделив на оба уравнения, получим систему, связывающую неизвестные коэффициенты:
, отсюда (система вырожденная).
Положим .
.
Проверим систему на линейную зависимость.
Таким образом, общий вид решения:
В случае кратных корней одно решение находится сразу, второе – методом неопределенных коэффициентов.
Пример3. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами, имеющих комплексно-сопряженные корни.
Общее решение:
Рассмотрим еще один пример, который иллюстрирует решение системы трех линейных дифференциальных уравнений.
Даны две последовательные химические реакции и . Скорость каждой из реакций пропорциональна концентрации реагирующего вещества. Константы скорости реакций равны a и b.
Обозначим x,y,z концентрации веществ A,B и C соответственно.
Система уравнений примет вид:
собственный вектор .
собственный вектор находится из системы .
собственный вектор .
Константы С1,С2 и С3
определяются из начальных концентраций веществ A,B и C.
Лекции
набирали Кузнецова Анна.
Васильев Александр.
Литвинов Юрий.
Селюнин Александр.