Курсовая работа по физической химии на тему «Синтез BaDy₂O₄ и определение его термодинамических характеристик по данным зависимости ЭДС электрохимической ячейки от температуры.

1. Введение.

Явление сверхпроводимости было открыто в 1911 году голландским физиком Камерлинг-Оннесом при исследовании зависимости электросопротивления ртути от температуры. Но длительное время преобладали неутешительные прогнозы, что температура перехода в сверхпроводящее состояние никогда не поднимется выше нескольких десятков кельвинов, несмотря на все усилия ученых, И что сверхпроводимость никогда не найдет практического применения. Однако в 80-х годах ситуация изменилась коренным образом. В 1987 году исследователи из Техасского университета под руководством профессора К. Чу из оксидов бария, иттрия и меди синтезировали YBa₂Cu₃O_{7-х} (Y123), с критической температурой перехода в сверхпроводящее состояние (СП) состояние равной 93 К, далее были получены редкоземельные аналоги купрата LnBa₂Cu₃O_{7-x} с температурой перехода 85÷95 К. Аналогичное соединение с неодимом имеет Тс 94 К, но в ней наблюдается существенное увеличение плотности критического тока в сильных магнитных полях.

Химия высокотемпературных сверхпроводников продолжает стремительно развиваться. Значительный интерес представляет поиск новых сверхпроводящих материалов путем подбора А-катиона из семейства лантанидов. Наиболее оптимальным в этом случае является сочетание расчетных и экспериментальных способов химической термодинамики. Реализация такого подхода предполагает поэтапное изучение подсистем, составляющих данную систему. Поэтому целью настоящей работы является определение термодинамических свойств BaDy₂O₄ – одного из соединений, кристаллизующи хся в системе Ba-Dy-O.

2. Литературный обзор.

2.1. Фазовая диаграмма системы Ва-Ду-О.

Фазовая диаграмма системы BaO-Dy₂O₃ приведена в книге [1]. Она была изучена методами ДТА, РФА и микроскопического анализа в интервале температур 1200-2400 °C. Образцы для исследования синтезированы спеканием смесей BaCO₃ (марка х. ч.) и Dy₂O₃ (99,9%) с последующей закалкой. Установлено образование четырех соединений, характеристики которых приведены в таблице 1.

Соединение	Сингония	Α	В	С	Т.пл.(*) или
					разл(**)
BaDy ₂ O ₄	Ромбическая	10.415	12.146	3.474	1400**
Ba ₃ Dy ₄ O ₉	Гексагональная	6.132		25.288	2050*
Ba ₄ Dy ₂ O ₇	Тетрагональная	4.373		28.79	_
Ba ₄ Dy ₂ O ₇	Тетрагональная	6.1307		25.263	_
Ba ₃ Dy ₃ O _{7.5}	Тетрагональная	4.3879		11.939	950**

Таблица 1. Фазы в системе Ва-Dy-O.

ВаDy₂O₄ при нагревании до 1400 °C разлагается на Dy₂O₃ и Ba₃Dy₄O₉, который плавится конгруэнтно при 2050 °C. Ва₃Dy₃O_{7.5} неустойчив уже выше 950 °C. Данные о термической устойчивости других соединений в этой системе не приводятся. Общий вид диаграммы состояния представлен на рисунке 1.

Рис.1. Диаграмма состояния системы BaO-Dy₂O₃.

Рентгенограмма BaDy₂O₄ имеется в международной базе порошковых рентгенографических стандартов ICDD PDF2 [2] и представлена в таблице 2.

Nº	D,Å	1/1 ₀ ,%	Н	К	L
1	3.0376	66	0	4	0
2	3.0156	100	3	2	0
3	2.8952	79	1	2	1
			2	0	1
4	2.5564	18	1	3	1
5	2.4084	10	3	1	1
6	2.0935	30	2	4	1
7	2.0843	24	4	0	1
8	2.0546	10	5	1	0
			4	1	1
9	1.8884	12	2	6	0
10	1.7494	15	3	6	0
11	1.7368	26	6	0	0
			0	0	2
12	1.7252	15	1	6	1
13	1.7192	26	5	4	0
			4	4	1
14	1.7147	21	5	2	1
15	1.5081	29	6	4	0
			0	4	2
16	1.5054	34	6	2	1
17	1.2281	11	6	7	0
			5	8	0

Таблица 2. Рентгенограмма BaDy₂O₄.

<u>MF₂.</u>

Этот вопрос подробно разработан в статье [3]. Имеющиеся данные о взаимодействии кислорода и оксидов щелочноземельных металлов со фторидами кальция и бария свидетельствуют о незначительной растворимости МО в MF_2 и позволяет предположить, что аналогичная картина имеет место в местах контактов электродов γ' и γ'' с MF_2 . В таком случае электрохимическую ячейку, состоящую из двух оксидных электродов $<M_1O>$ и $<M_2O>$, двух различных по своей природе металлических потенциалоотводов α' и α'' и электролита MF_2 можно изобразить в виде схемы, представленной на рисунке 2.

Рис.2. Схематическое изображение ячейки с электролитом MF₂, компоненты электродов которой ограниченно растворимы в электролите и наоборот.

На этой схеме электроды представляют собой твердые растворы или равновесные смеси оксидов, обозначенные как <M₁O> и <M₂O>. Химические потенциалы этих оксидов равны $\mu_{<M1O>}$ и $\mu_{<M2O>}$. Фазы β' и β'' представляют собой ограниченные твердые растворы оксидов в MF₂, находящиеся в равновесии с соответствующими фазами электродов γ' и γ'' в местах контактов электрод/электролит. Так как растворимость кислорода и оксидов щелочноземельных металлов в MF₂ весьма мала, то это дает возможность считать, что растворение оксидов в местах контактов с электролитом практически не меняет активности MF₂ в фазах β' и β'' . И

наоборот, растворение MF₂ в оксидах не меняет их активности в электродах γ' и γ'' . Измеряемая разность потенциалов Е такой электрохимической цепи будет равна сумме скачков потенциалов на границах α'/γ' , γ'/β' , β'/β' , β'/β'' , β''/γ'' , γ''/α'' . То есть $E = (\phi(\alpha'') - \phi(\gamma')) + (\phi(\gamma') - \phi(\alpha')) + (\phi(\beta'') - \phi(\beta')) + (\phi(\beta') - \phi(\beta'')) + (\phi(\beta') - \phi(\gamma')) + (\phi(\beta') - \phi(\gamma')) + (\phi(\beta') - \phi(\beta')) + (\phi(\beta')) + (\phi(\beta')) + (\phi(\beta'))) + (\phi(\beta')) + (\phi(\beta')) + (\phi(\beta')) + (\phi(\beta'))) + (\phi($

Два первых члена выражения могут быть определены из условия электрохимического равновесия, когда электрохимический потенциал двух фаз на границах α'/γ' и γ''/α'' одинаков:

 $\mu(\alpha'')_{e} - F\varphi(\alpha'') = \mu(\gamma'')_{e} - F\varphi(\gamma'')$ $\mu(\alpha')_{e} - F\varphi(\alpha') = \mu(\gamma')_{e} - F\varphi(\gamma')$

Полагая $\alpha''=\alpha'=Pt$, получим ($\varphi(\alpha'') - \varphi(\gamma'')$)+($\varphi(\gamma') - \varphi(\alpha')$)=($\mu(\gamma')_e - \mu(\gamma'')_e$)/F {2.2}

Имеющиеся в настоящее время данные по электрохимическим свойствам CaF₂ и BaF₂ свидетельствуют о преимущественно **F**-ионной проводимости этих электролитов в широком интервале температур и давлений кислорода. На основании этого автор [3] предлагает следующую формулу для разности потенциалов $\varphi(\beta'') - \varphi(\beta')$: $\varphi(\beta'') - \varphi(\beta') = (\mu(\beta'')F - \mu(\beta'))/F$ {3.2}.

Образование фаз $\beta' u \beta''$, находящихся в равновесии с электродами $\gamma' u \gamma''$ предполагает наличие обмена ионов между оксидами и электролитом на границах раздела фаз $\gamma'/\beta' u \beta''/\gamma''$. При рассмотрении равновесия относительно ионов O²⁻, получается следующее выражение:

 $(\varphi(\gamma'') - \varphi(\beta'')) + (\varphi(\beta') - \varphi(\gamma')) = (\mu(\gamma'')O^{2^{-}} - \mu(\gamma')O^{2^{-}}) - (\mu(\beta'')O^{2^{-}} - \mu(\beta')O^{2^{-}})/2F$ {4.2}

После подстановки {2.2}, {3.2} и {4.2} в {1.2} и соответствующих преобразований получается выражение

 $\underline{E} = (\mu(\underline{\gamma}')O - \mu(\underline{\gamma}')O) - (\mu(\underline{\beta}'')_{<\underline{\phi} \mod M 2>} - \mu(\underline{\beta}')_{<\underline{\phi} \mod M 1>} - (\mu(\underline{\beta}')_{<\underline{M} 1O>} - \mu(\underline{\beta}'')_{<\underline{M} 2O>})/2F \{5.2\}$

Отсюда следует, что в случае обратимости относительно ионов кислорода потенциал определяется тремя членами:

- Разностью химических потенциалов кислорода в электродах;
- Разностью химических потенциалов фторидов металлов в β' и β'';
- Разностью химических потенциалов оксидов в β' и β'';

Выражение {5.2} не позволяет непосредственно вычислить термодинамическое значение Е ячейки, так как $\mu(\beta')_{<\phi mopu\partial M2>} u \mu(\beta')_{<\phi mopu\partial M1>}$, а также $\mu(\beta')_{<M1O>} u \mu(\beta'')_{<M2O>}$ не известны и не равны друг другу, а химические потенциалы атомов кислорода в электродах ячейки не фиксированы.

Согласно принятой модели мы предполагаем, что на границах раздела фаз ${\not\!\!/}/{\not\!\!/}$ и

β["]/γ["] имеет место ограниченная взаимная растворимость компонентов оксидных электродов и фторидов металлов. При условии такого равновесия имеем:

 $\mu(\gamma')_{<\phi mopu \partial M1>} = \mu(\beta')_{<\phi mopu \partial M1>}$ $\mu(\gamma'')_{<\phi mopu \partial M2>} = \mu(\beta'')_{<\phi mopu \partial M2>}$ $\mu(\gamma')_{<M10>} = \mu(\beta')_{<M10>}$ $\mu(\gamma'')_{<M20>} = \mu(\beta'')_{<M20>}$

В электродах значения химических потенциалов фторидов могут быть зафиксированы равными стандартным потенциалам добавлением заведомо избыточного количества соответствующих фторидов.

Тогда

 $\mu(\gamma')_{<\phi mopu\partial M1>} = \mu(\beta')_{<\phi mopu\partial M1>} = \mu'_{<\phi mopu\partial M1>}$ $\mu(\gamma'')_{<\phi mopu\partial M2>} = \mu(\beta'')_{<\phi mopu\partial M2>} = \mu'_{<\phi mopu\partial M2>}$ Kpome Toro, $\mu O = \mu'O + RTIn(p(O_2))/2$

Тогда уравнение принимает следующий вид:

<u>E=((μ[°]<φторид M2></sub> - μ[°]<φ торид M1></sub>) + (μ(γ)/_{<M1O>} - μ(γ)/_{<M2O>}) + (RT/2){In(p(O₂) γ / - In(p(O₂) γ/)/2F} При равенстве парциальных давлений кислорода над электродами выражение принимает вид:</u>

$\underline{E} = ((\mu'_{<\phi mopu \partial M2>} - \mu'_{<\phi mopu \partial M1>}) + (\mu(\gamma')_{<M10>} - \mu(\gamma'')_{<M20>}))/2F$

Таким образом, можно однозначно связать измеряемый потенциал ячейки с разностью химических потенциалов оксидов на левом и правом электроде.

Если активность оксида M₁O на левом электроде равна единице и M₁=M₂,имеем

$\underline{E=(\mu_{M10}^{\circ} - \mu(\gamma) < M10)/2F}$

В термодинамическом эксперименте гальванические ячейки такого типа будут работать обратимо, если

- 1. В электроды добавлены фториды соответствующих металлов;
- В процессе эксперимента активности фторидов на границе электрод-электролит не изменяются за счет взаимодействия последних с потенциалообразующими оксидными фазами, кислородом и примесями.
- 3. Давление кислорода над электродами одинаково. Для выполнения последнего условия опыты проводят в приборе с общим газовым пространством.

<u>2.3 Определение термодинамических характеристик BaLn₂O₄.</u>

Данные о термодинамических свойствах BaD у₂O₄ в литературе отсутствуют.

В статье [4] объектом исследования была фаза BaY₂O₄. Ее синтез проводили взаимодействием Y₂O₃ и BaO₂ в два этапа- сначала при 1000 °C 24 часа, а затем при 1100 °C 72 часа. Чистоту синтезированного соединения контролировали при помощи данных рентгеновской дифракции. Для определения термодинамических свойств измеряли температурную зависимость ЭДС ячейки

Рt,O₂ | Ва F₂+Y₂BaO₄+Y₂O₃ | Ва F₂+2 мольн.%Al₂O₃ | ВаO+Ва F₂ | O₂,Pt

Измерения проводили в интервале 850-1250 К при помощи Pt-Rh термопары. Электрод сравнения представлял собой смесь оксида и фторида в соотношении 1:0.3, а индикаторный электрод-смесь оксидов бария, иттрия и фторида бария в соотношении 1:1:0.3.

Тогда электродные реакции можно представить следующим образом:

0.5O₂+BaF₂+2e=BaO+2F⁻ и 0.5O₂+BaF₂+Y₂O₃+2e = Y₂BaO₄+ 2F⁻

После линейной аппроксимации методом МНК для реакции

Y_2O_3 +BaO= Y_2BaO_4

∆G°=-nFE=-128.31+0.0052Т (± 0.58кДж/моль).

В статье [5] определение термодинамических характеристик Y₂BaO₄ проводили на основании измерения зависимости от температуры ЭДС ячейки

$Pt,O_2 \mid BaF_2 + BaZrO_3 + ZrO_2 \mid CaF_2 \mid Y_2O_3 + Y_2BaO_4 + BaF_2 \mid O_2,Pt$

Соответственно, электродные процессы $0.5O_2$ +BaF₂+ZrO₂+2e=BaZrO₃+2F⁻ и $0.5O_2$ +BaF₂+Y₂O₃+2e = Y₂BaO₄+ 2F⁻

Суммарное уравнение $ZrO_2 + Y_2BaO_4 = BaZrO_3 + Y_2O_3$.

Интервал температур 974-1222 К. Синтез Y₂BaO₄ проводили при 1100 °C взаимодействием Y₂O₃ и BaCO₃. Мольные соотношения Y₂O₃:Y₂BaO₄:BaF₂ и BaF₂:BaZrO₃:ZrO₂ равнялись по 2:1:4 соответственно.

С использованием термодинамических данных, полученных Левицким в работе [3] для образования BaZrO₃ из соответствующих оксидов, и линейной аппроксимации авторы рассчитали ΔG° для реакции

Y_2O_3 +BaO= Y_2BaO_4

∆G°=-nFE=-120.1+0.0041Т (± 0.4кДж/моль).

Видно, что данные статей [4] и [5] хорошо согласуются между собой, отмечается также

чрезвычайно малый вклад энтропийного члена, по порядку величины сопоставимый с энтропией смешения соответствующих оксидов.

Однако, данные [6] совершенно не согласуются с данными статей [4] и [5].В этом случае для определения термодинамических характеристик Y₂BaO₄ использовали зависимость от температуры в интервале 900-1100°C ЭДС ячейки

$\mathsf{Pt},\!\mathsf{O}_2 \ \big| \ \mathsf{Y}_2\mathsf{BaO}_4\!+\!\mathsf{Y}_2\mathsf{O}_3\!+\!\mathsf{BaF}_2 \,|\, \mathsf{BaF}_2 \,|\, \mathsf{CaO}\!+\!\mathsf{CaF}_2 \,\big| \ \mathsf{O}_2,\!\mathsf{Pt}$

Электродные процессы 0.5O₂+BaF₂+Y₂O₃+2e = Y₂BaO₄+ 2F⁻ и 0.5O₂+CaF₂+2e=CaO+2F⁻

Суммарное уравнение Y_2BaO_4 + Ca F_2 = Y_2O_3 + CaO+ Ba F_2

Синтез смеси Y₂BaO₄+Y₂O₃ проводили из карбоната бария и оксида иттрия при 1000°С, чистоту продуктов контролировали методом РФА. Измерения ЭДС осуществляли в потоке очищенного аргона, после окончания эксперимента контролировали фазовый состав образца. Совпадение параметров элементарной ячейки Y₂BaO₄ до и после опыта дало возможность утверждать об отсутствии кислородной нестехиометрии в этом соединении. Полученные данные аппроксимировались линейной зависимостью и комбинировались с установленной этими же авторами в [7] зависимостью от температуры ЭДС ячейки

 $Pt,O_2 | BaO+BaF_2 | BaF_2 | CaO+CaF_2 | O_2,Pt$

В результате для реакции

$$Y_2O_3$$
+BaO= Y_2BaO_4

получено следующее выражение

∆G°=-35.6+0.0012Т (± 0.9кДж/моль).

Возможными причинами несовпадения результатов могут быть:

- В статье [4] в состав электрода сравнения входит ВаО, который отличается высокой гигроскопичностью и агрессивностью по отношению к платиновым контактам при высоких температурах;
- В статье [5] использовался электрод сравнения на основе цирконата бария, в котором равновесие при температурах, далеких от температуры плавления, устанавливается крайне медленно.

Авторы статьи [8] определяли термодинамические характеристики Ln₂BaO₄(где Ln=Nd, Sm, Eu и Gd) аналогично тому, как это делалось в работе [4] за исключением того, что температурный интервал составлял 1050-1150 К. Полученные данные приводятся в виде таблицы для температуры 1100 К.

Ln	-∆G°,кДж/моль
Nd	93
Sm	110
Eu	98
Gd	97

Таблица 2. Термодинамические характеристики Ln₂BaO₄.

В работе [9] для Nd₂BaO₄ получены совершенно иные результаты. В этом случае для определения термодинамических характеристик Nd₂BaO₄ использовали зависимость от температуры в интервале 1040-1170К ЭДС ячейки

$\mathsf{Pt}, \mathsf{O}_2 \ \big| \ \mathsf{Nd}_2\mathsf{BaO}_4 + \mathsf{Nd}_2\mathsf{O}_3 + \mathsf{BaF}_2 \, | \ \mathsf{BaF}_2 \, | \ \mathsf{CaO} + \mathsf{CaF}_2 \, \big| \ \mathsf{O}_2, \mathsf{Pt}$

Электродные процессы $0.5O_2$ +BaF₂+Nd₂O₃+2e = Nd₂BaO₄+ 2F⁻ и $0.5O_2$ +CaF₂+2e=CaO+2F⁻.

Суммарное уравнение Nd_2BaO_4 +CaF₂=Nd₂O₃+CaO+BaF₂

Синтез смеси Nd₂BaO₄+Y₂O₃ проводили из карбоната бария и оксида неодима сначала при 1150°C, затем при 1400°C, чистоту продуктов контролировали методом РФА. Измерения ЭДС осуществляли как в потоке очищенного аргона, так и в токе кислорода, после окончания эксперимента контролировали фазовый состав образца. Совпадение параметров элементарной ячейки Nd₂BaO₄ до и после опыта дало возможность утверждать об отсутствии кислородной нестехиометрии в этом соединении и обрабатывать результаты двух опытов совместно. Полученные данные аппроксимировались линейной зависимостью и комбинировались с установленной этими же авторами в [7] зависимостью от температуры ЭДС ячейки

$Pt,O_2 | BaO+BaF_2 | BaF_2 | CaO+CaF_2 | O_2,Pt$

В результате для реакции Y₂O₃+BaO=Y₂BaO₄ получено следующее выражение

∆G°=-30.4+0.0012Т (± 0.9кДж/моль).

Видно, что при T=1100 К ∆G°=-29.08 кДж/моль. Попытка воспроизвести выполненные в [8] измерения дали плохо воспроизводимые значения, отличавшиеся в несколько раз от описанных в [8]. Кроме того, большое отрицательное значение ∆G°(Nd₂BaO₄) плохо согласуется со слабой устойчивостью этой фазы во влажной атмосфере. Возможной причиной некорректности полученных в [8] данных является слишком низкая температура, в результате чего не удалось достигнуть равновесия в электроде сравнения и соотнести измеряемые значения ЭДС с реальными процессами, протекающими в гальваническом элементе.

3.Экспериментальная часть.

3.1.Синтез образцов.

Синтез равновесной смеси BaDy₂O₄ и Dy₂O₃ осуществляли твердофазным способом. Исходные вещества-BaCO₃ (ч.д.а.) и Dy₂O₃ (99.9%). Реактивы предварительно прокаливали-карбонат бария при 400°C, а оксид диспрозия при 900°C. Для прокаливания и отжига использовали печь Nabertherm с программируемым температурным режимом. Взвешивание проводили на весах Sartorios с точностью до 0.0001 г. Смесь BaCO₃ и Dy₂O₃ в соотношении 1:2 гомогенизировали в кварцевой ступке под ацетоном до полного его испарения и прессовали в таблетки при помощи пресса Carver. Отжиг проводили в три этапа(48 часов при 950°C, 144 часа при 1150°C и 72 часа при 1400°C)с промежуточным перетиранием образца на каждом этапе. Рентгенофазовый анализ показал наличие в смеси BaDy₂O₄ и Dy₂O₃.

3.2.Исследование термодинамических свойств методом ЭДС.

Принципиальная схема электрохимической ячейки, используемой в настоящей работе, имеет следующий вид:

$\mathsf{Pt}, \mathsf{O}_2 \mid \mathsf{Dy}_2\mathsf{BaO}_4 + \mathsf{Dy}_2\mathsf{O}_3 + \mathsf{BaF}_2 \mid \mathsf{BaF}_2 \mid \mathsf{CaO} + \mathsf{CaF}_2 \mid \mathsf{O}_2, \mathsf{Pt}$

Использование равновесной смеси CaO-CaF₂ в качестве электрода сравнения вместо смеси BaO-BaF₂ (что упростило бы расчет термодинамических функций) обусловлено высокой гигроскопичностью оксида бария и его агрессивностью по отношению к платиновым контактам при высоких температурах, а также возможностью образования твердого раствора BaO_{1-х} при проведении опытов в атмосфере кислорода. Все электроды предварительно прокаливали в вакууме (10⁻⁵ Па) при 900°C в течение суток. В качестве твердого электролита использовали шлифованные монокристаллы фторида бария толщиной 3-4 мм. Измерения температуры проводили в потоке(1 см³/мин) кислорода, поступавшего из баллона и осушенного пропусканием через колонку с P₂O₅, при помощи термопары, изготовленной из сплава Pt-Rh. Значения ЭДС считывались с цифрового табло универсального вольтметра B7-21, действие которого основано на сведении к нулю тока в цепи.

Общая схема установки представлена на рисунке 3.

Рис.3. Схема установки для измерения зависимости ЭДС от температуры.

Электрохимическая ячейка собирается в специальном кварцевом зажиме. состоящем из внешней кварцевой пробирки 1 с плоским дном, с окошком 2 в нижней части для сборки ячейки и расширением в верхней части и внутреннего штока 3 с расширением в верхней части. Электрохимическая ячейка 6, состоящая из таблеток исследуемого электрода, электролита и электрода сравнения, собирается на платиновой пластинке-токосъемнике, соединенной с платиновой проволокой 4, служащей потенциалоотводом, и прижимается штоком, имеющим такой же потенциалоотвод 5. Стальная пружина 7, шайба 8 и скоба 9, вставляемая в отверстие в верхней части внешней пробирки, обеспечивают такое крепление штока, при котором ячейка находится под небольшим давлением, что создает надежный контакт между таблетками ячейки и потенциалоотводом. Собранная ячейка подвешивается к головке 10 при этом потенциалоотводы приссединяются к молибденовым реактора, 11,12,впаянным в головку термопары. Длина термопары 13 подгоняется так, чтобы ее спай упирался в дно штока. При помощи кварц-молибденовых переходов 15.16 реактор соединяется с системой подачи газа. Реактор нагревается в печи 18. Между реактором и спиралью нагревателя помещается заземленный экран из жаропрочной стали 19, предохраняющий ячейку от возникновения случайных наведенных потенциалов.

Равновесные значения ЭДС устанавливались приблизительно через 10 часов после запуска кислорода в начале опыта и через 3-4 часа после изменения температуры в ходе опыта. Время работы ячейки составляет не более 4 суток, после чего наблюдается необратимое падение ЭДС, вызванное, вероятно, изменением электрофизических свойств электролита за счет образования ВаО. В рамках данной работы время выдержки составляло от двух до десяти часов с момента установления равновесия. Полученные данные представлены в таблице 4.

№ опыта	Т, К	Е, мв	Выдержка, часов
1	1101	162.6	10
2	1123	164.8	2
3	1112	166.7	10
4	1089	166.0	3
5	1064	163.6	5
6	1040	159.7	8
7	1058	163.0	2
8	1079	165.3	8
9	1103	166.3	2
10	1129	167.6	5
11	1149	169.2	4
12	1172	170.3	2
13	1161	169.4	5
14	1140	167.6	3

Таблица 4. Зависимость ЭДС от температуры для ячейки Pt,O₂ / Dy₂BaO₄+Dy₂O₃+BaF₂ / BaF₂ / CaO+CaF₂ / O₂,Pt

Обработав полученные данные методом наименьших квадратов, получили следующую аналитическую зависимость E(мB) от T(K)

$E(\pm 3.5)=(91.5\pm 10.17)+(67.1\pm 9.17)10^{-3}T$

3.3.Рентгенофазовый анализ.

Фазовый состав образцов исследовали при помощи метода дифракции рентгеновских лучей. Съемку рентгенограмм проводили в лаборатории неорганической кристаллохимии в камере Гинье. В качестве рентгеновского излучения использовалось СиК_а-излучение, в качестве монохроматора-монокристалл кварца, внутренним стандартом служил металлический германий. Регистрация дифракционных лучей производилась при помощи фотопластинки. Промер рентгенограммы выполнен на компараторе ИЗА-2, индицирование и уточнение параметров элементарной ячейки проведено в программе Powder2 с помощью методички [10]. Для сравнения экспериментальных данных с имеющимися в литературе использовались материалы международной базы порошковых рентгенографических стандартов ICDD PDF2. Анализ показал, что фазовый состав электродной смеси (Dy₂BaO₄+Dy₂O₃) после измерения ЭДС полностью совпадает с исходным. Результаты РФА представлены в таблице 5.

		09200			5320	<i>3</i> , <i><i>n</i> 22 00</i>	
N⁰	D, Å	h	k	I	h	k	I
1	4.350				2	1	1
2	3.081				2	2	2
3	3.039	0	4	0			
4	3.016	3	2	0			
5	2.896	1	2	1			
6	2.669				4	0	0
7	2.552	1	3	1			
8	2.090	2	4	1			
		4	0	1			
9	1.885				4	4	0
10	1.731	6	0	0			
11	1.715	5	4	0			
		4	4	1			
		5	2	1			
12	1.603				6	2	2
13	1.507	6	4	0			
		0	4	2			
		6	2	1			

Таблица 5. Результаты РФА смеси $Dy_2BaO_4+Dy_2O_3$ после эксперимента. Dy_BaO_4 # 42-1495 Dy_O_3 # 22-0612

Параметры элементарных ячеек Dy₂BaO₄ и Dy₂O₃ после измерения зависимости ЭДС ячейки от температуры приведены в таблицах 6 и 7.

Таблица 6. Параметры элементарной ячейки Dy₂BaO₄,

пространственная группа Рпат

Параметр	После	Из ICDD PDF2	Из [1]
	эксперимента		
A	10.414(3)	10.42	10.415
В	12.154(5)	12.15	12.146
С	3.472(2)	3.473	3.474

Таблица 7. Параметры элементарной ячейки Dy₂O₃, пространственная

группа ІаЗ

	После эксперимента	Из ICDD PDF2
A	10.669(4)	10.66

<u>3.4.Расчет термодинамических характеристик Dy2BaO4.</u>

Совпадение экспериментальных параметров элементарных ячеек после измерения ЭДС и литературных данных указывает на отсутствие кислородной нестехиометрии в соединении и позволяет записать электродные процессы и суммарную потенциалобразующую реакцию следующим образом:

$BaF_{2}+Dy_{2}O_{3}+0.5O_{2}+2e=Dy_{2}BaO4+2F$	{1.3}
---	-------

	CaF ₂ +0.5O ₂ +2e=CaO +2F ⁻	{2.3}
(2) - (1):	$CaF_2+Dy_2BaO_4=CaO+BaF_2+Dy_2O_3$	{3.3}

Энергия Гиббса потенциалобразующей реакции связана с измеряемыми значениями ЭДС формулой:

∆*G⁰±0.7* (кДж/моль)= -(17.6±2.0)-(12.9±1.8)10⁻³Т

Для расчета температурной зависимости энергии Гиббса образования фазы ВаDy₂O₄ необходимо знать также ΔG^0 обменной реакции:

$$Ca F_2 + BaO = CaO + Ba F_2 \qquad \{4.3\}$$

Для уменьшения систематической ошибки мы использовали не справочные данные для реакции {4.3}, а результаты расчета энергии Гиббса этой реакции по результатам измерений ЭДС ячейки:

 $Pt,O_2 \mid BaO, BaF_2 \mid CaF_2 \mid CaO, CaF_2 \mid Pt, O_2$

∆*G⁰±0.8*(кДж/моль)= -(66.7±2.6)+(7.0±2.7)10⁻³Т

Комбинируя реакции {3.3} и {4.3}, получаем реакцию образования Dy₂BaO₄ из оксидов:

$BaO+Dy_2O_3=Dy_2BaO_4$

Соответс твенно, *∆G⁰±1.1*(кДж/моль)= -(49.1±3.3)+(19.9±3.2)10⁻³Т

4. Обсуждение результатов.

Таблица 8. Сопоставление $\varDelta G^0$ при 1100 К для реакции

 $BaO+Ln_2O_3=Ln_2BaO_4.$

Ln	-∆G⁰, кДж/моль	Ссылка
Y	120	[5]
Nd	93	[8]
Sm	110	[8]
Eu	98	[8]
Gd	97	[8]
Y	22	[6]
Nd	19	[9]
Dy	27	Наст. работа

Таким образом, данные, полученные в рамках настоящей работы, хорошо согласуются с результатами более ранних исследований соответствующих соединений иттрия и неодима, выполненных в лаборатории химической термодинамики М. Л. Ковбой и Ю. Я. Сколисом с сотрудниками. В то же время эти результаты в несколько раз меньше тех, что были получены в работах [5] и [8]. Возможные причины этого уже обсуждались в статьях [6] и [9]. Поэтому наиболее целесообразно сопоставлять результаты настоящей работы с данными [6] и [9].

Таблица 9. Сопоставление выражений для ⊿G⁰ реакции BaO+Ln₂O₃=Ln₂BaO₄, полученных в лаборатории химической термодинамики.

Ln	∆G ⁰ , кДж/моль.
Y	-35.6+0.0012T
Nd	-30.4+0.0012T
Dy	-49.1+0.0020T

Для интерпретации полученных результатов наиболее целесообразно сопоставить данные ионных кристаллохимических радиусов, взятые из [11].

Ln	R, Å
Y	0.92
Nd	1.04
Dy	0.92

Таблица 10. Кристаллохимические ионные радиусы Ln.

Таким образом, при переходе от Nd к Dy, сопровождающемся уменьшением кристаллохимического ионного радиуса из-за лантанидного сжатия, уменьшается энтальпийная и увеличивается энтропийная составляющая изменения стандартной энергии Гиббса для реакции образования Ln₂BaO₄ из оксидов. То, что данные по иттрию не совсем укладывается в эту зависимость, возможно, связано с тем, что последний, в отличие от неодима и диспрозия, d-элемент, поэтому прямое сопоставление его с f-элементами даже в случае значительного кристаллохимического сходства может оказаться не совсем корректным.

5.Выводы.

- 1. При помощи твердофазной реакции BaCO₃ с Dy₂O₃ синтезирована фаза Dy₂BaO₄.
- 2. Исследована зависимость ЭДС от температуры для ячейки

$\mathsf{Pt}, \mathsf{O}_2 \ \big| \ \mathsf{Dy}_2\mathsf{BaO}_4 + \mathsf{Dy}_2\mathsf{O}_3 + \mathsf{BaF}_2 \ | \ \mathsf{BaF}_2 \ | \ \mathsf{CaO} + \mathsf{CaF}_2 \ \big| \ \mathsf{O}_2, \mathsf{Pt}$

- Полученные данные аппроксимировались линейной зависимостью и использовались для расчета изменения стандартной энергии Гиббса образования Dy₂BaO₄.
- 4. Проведено сопоставление найденной величины с литературными данными для других лантанидов и иттрия.

6.Список литературы.

- 1. Диаграммы состояния систем тугоплавких оксидов. Справочник. Под ред. Р. Г. Гребенщикова, т.6, с. 336. С-П., Наука:1997.
- 2. ICDD PDF2, карточки #42-1495 и #22-0612.

3. В. А. Левицкий. Некоторые перспективы применения метода ЭДС со фтор-ионным электролитом для термодинамического исследования тугоплавких двойных оксидных соединений. Вестн. моск. ун-та. Сер. химия, 1978, т. 19, № 2, стр. 107-126.

- 4. G. M. Kale and K. T. Jacob. Phase relations and thermodynamic properties of compounds in the pseudobinary system BaO-Y₂O₃. Solid State Ionics, 1989, v. 34, p. 247-252.
- A. M. Azad and O. M. Sreedharan. Thermodynamic stability of Y₂BaO₄ by CaF₂-based e.
 m. f. measurements. Journal of Materials Science Letters, 1989, v. 8, p. 67-68.
- 6. Ю. А. Сколис и С. Ф. Пашин. Термодинамические свойства BaY₂O₄. Журнал физической химии, 2001, № 11(в печати).
- Ю. А. Сколис, С. Ф. Пашин, М. Л. Ковба. Сверхпроводимость: физ., хим., техника. 1990, т. 3, №12, с. 2792.
- R. Subasri and O. M. Sreedharan. Thermodynamic stabilities of Ln₂BaO₄ (Ln=Nd, Sm, Eu or Gd) by CaF₂-based Emf measurements. Journal of Alloys and Compounds, 1998, v. 274, p. 153-156.
- 9. Ваховская 3. С., Ковба М. Л., Успенская И. А. Термодинамические свойства ВаNd₂O₄. Журнал физической химии, 2001, №11(в печати).
- 10. Р. В. Шпанченко и М. Г. Розова. Рентгенофазовый анализ. С. 2-7, М., 1998.
- 11.R. D. Shannon and C. T. Prewitt. Effective ionic radii in oxides and fluorides.

7.Содержание.

1. Введение	2
2. Литературный обзор	3
<u>2.1. Фазовая диаграмма системы Ва-Dy-O</u>	3
2.2. Термодинамика электрохимической ячейки с твердым электроли	том типа
<u>MF₂</u>	6
<u>2.3 Определение термодинамических характеристик BaLn₂O₄</u>	9
3.Экспериментальная часть	11
<u>3.1.Синтез образиов</u>	11
<u>3.2.Исследование термодинамических свойств методом ЭДС</u>	12
<u>3.3.Рентгенофазовый анализ</u>	15
<u>3.4.Расчет термодинамических характеристик Dy₂BaO₄</u>	17
4.Обсуждение результатов	19
5.Выводы	21
6.Список литературы	22
7.Содержание	23